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Stochastic resonance in two-state model of membrane channel with comparable opening
and closing rates

S.L. Ginzburg and M.A. Pustovoit
B.P. Konstantinov Petersburg Nuclear Physics Institute, Gatchina Leningrad District 188350, Russia

~Received 14 March 2002; published 16 August 2002!

Voltage-gated ion channels in biological membranes can be modeled as two-state stochastic systems with
inter-state transition probabilities that depend on external stimulus. We study analytically the passage of a
signal through such a system in the presence of external noise in the case when the above dependence is
arbitrary, and illustrate our approach using the two models of ion channels known in the literature. The explicit
expressions for the spectral density of the output signal and noise, the signal-to-noise ratio, and the coherence
function are obtained for rectangular periodic signal and dichotomous noise in a wide range of parameters. The
dependence of the above quantities on the bias and on the noise amplitude demonstrates strong resonant
behavior in the regions where the probabilities of channel closing and opening become equal. This resonance
results from additional symmetry between channel states and differs from conventional stochastic resonance
studied earlier.
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I. INTRODUCTION

Stochastic resonance~SR! is one of the most interestin
and bright examples of the constructive role of noise in
ture. This phenomenon has been extensively studied in
last decade~see reviews@1,2# and the older review@3#! and
can be briefly described as the optimization of passage
signal through a nonlinear system with the noise of nonz
intensity, added to the signal. SR is found out in numer
systems of various kinds; a significant fraction of public
tions was devoted to the study of its possible role in inf
mation transfer in living organisms, where the useful sign
are always accompanied by strong ineradicable noise~see the
recent minireview@4#!. In particular, it was found out tha
living beings can use SR at several levels: the system
~the recognition of visual@5# and tactile@6# stimuli by hu-
mans! and the cellular one~mechanoreceptors of crayfish@7#,
neurons of brain cortex@8#, ear hair cells@9,10#!. Bezrukov
and Vodyanoy in their experiment@11# studied the ensembl
of ion channels, each of them being a small aggregate
alamethicin molecules, in a bilayer lipid membrane. Th
discovered that the system amplifies a small low-freque
periodic electric signal by several orders of magnitude a
addition of high-frequency colored noise to the signal. Th
also observed a weak maximum of the signal-to-noise r
at an optimum noise intensity. Thus the possibility of usi
SR at a molecular level in biological systems was dem
strated~the first, unsuccessful attempt to find SR in a sin
ion channel was performed in@12#!. In further publications
the authors showed analytically that SR could be observe
practically any system that generates stochastic pulses
nonlinear~exponential, in particular! dependence of the rat
of pulse appearance on external stimulus@13,14#. The theory
is constructed for a case of rather rare pulses of neglig
small duration. In case of a single ion channel, the ti
course of its conductivity can be roughly represented as
sequence of random switchings between two states, the
one and the closed one. The situation described by the a
1063-651X/2002/66~2!/021107~9!/$20.00 66 0211
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theory is realized here when the probability of transiti
from one channel state to another~i.e., closing! is much
higher than the probability of backwards transition~open-
ing!. In this case the channel is closed most of the tim
opening only occasionally and briefly. Such a set of prop
ties is not typical for channels in membranes of living cel
In many cases, the opening and closing rates and corresp
ing dwell times are comparable@15#. The last circumstance is
noted by Goychuk and Ha¨nggi in @16# where they studied SR
by information theory methods in the model of ion chann
considering it as a two-state system with an arbitrary ratio
transition rates. The theory is restricted by the case of
adiabatically slow signal and white noise. Our work is d
voted to the analytical study of passage of a signal thro
an ion channel as the two-state system where the trans
probabilities between states depend on external stimulus.
theory is constructed for arbitrary form of such dependen
for illustrative purposes we choose the model of potass
channel used in@16# @see Eq.~2! below#, as well as the
widely used model of Hodgkin-Huxley type@15# @our Eq.
~33!#.We study the system with dichotomous noise and re
angular periodic signal. Such a choice of noise and sig
allows us to solve the problem exactly for any, not neces
ily small, values of noise and signal amplitudes. We obt
explicit expressions for the signal-to-noise ratio~SNR!, the
coherence functionG2, and the power of output signal an
noise in a wide range of parameters. The main result of
paper is the detection of resonant behavior of investiga
quantities in the case when the probabilities of opening
closing of the channel become equal. This resonance dif
from conventional stochastic resonance; it is related to
additional symmetry between open and closed states of
channel that appears when the transition probabilities
identical. In the range of existence of such symmetry all
characteristics display interesting nonmonotonous behav

II. THE MODEL

The ion channel can be described by a simple dicho
mous model@15#. Let g(t) be the time-dependent conductiv
©2002 The American Physical Society07-1
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ity of the channel. In the standard theory it can accept t
values, 0 andg0. For our purposes it is convenient to intro
duce the dichotomous variabled(t):

d~ t !561, g~ t !5
g0

2
$11d~ t !%. ~1!

Obviously, d(t)521 corresponds to the closed state
the channel, andd(t)51 to the open one. The transition
between these states are determined by transition proba
ties, which, in turn, adiabatically follow the external stimul
~the transmembrane voltage drop! x(t). Let us definea(t) as
the probability of transition of the channel from the clos
state to the open one, andb(t) as the probability of back-
wards transition. The dependence of these quantities on
age has the form similar to that used by Goychuk and Ha¨nggi
@16#:

a~ t !5a0$x~ t !%, b~ t !5b0$x~ t !%,
~2!

a0~x!5
a2~x1p2!

12exp$2b2~x1p2!%
, b0~x!5a1exp~2b1x!.

The dependences~2! are represented in Fig. 1.
The external stimulusx(t) consists of the biasp, the di-

chotomous noises(t), and the square-wave periodic sign
R(t):

x~ t !5p1us~ t !1vR~ t !,

s~ t !561, ^s~ t !&50,

^s~ t ! s~ t8!&5exp$2gut2t8u%, ~3!

R~ t1T!5R~ t !5H 1, 0,t<T/2,

21, T/2,t<T.

In the present work we scale voltages and times to th
characteristic values 1 mV and 1 ms, like the authors of@16#.

FIG. 1. The transition probabilitiesa0(x), b0(x) for the model
of potassium channel~2! ~solid curves! and for the model of
Hodgkin-Huxley type~33! ~dashed curves! for the values of param-
eters:p2546,a150.15,a250.03,b150.038, andb251.
02110
o
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Now let us note that there are two kinds of stochasticity
our problem. The internal one is related to transitions
tween two statesd(t), and the external one is caused b
external noises(t). As a result, two types of averaging ap
pear in the theory, which we further designate, according
^ &d and ^ &s .

Besides, there are three characteristic times in the p
lem: the switching time ofd(t), equal toai

21 , the time of
correlation of dichotomous noiseg21, and the period of sig-
nal T. We takeT@g21,ai

21 , however, allowing the ratio
betweeng andai to vary. We shall consider two cases, th
adiabatic one:

T@g21@ai
21 , ~4!

and the fast noise one:

T@ai
21@g21. ~5!

In both these limits it is possible to explicitly calculate a
quantities that we are interested in as functions of parame
of the stimulusp,u,v.

III. ADIABATIC CASE

The master equation for nonstationary probability dens
P(d,t) for our problem is

dP~1,t !

dt
5a~ t !P~21,t !2b~ t !P~1,t !,

dP~21,t !

dt
5b~ t !P~1,t !2a~ t !P~21,t !. ~6!

Since the local balance in the system in adiabatic con
tions is established much faster than the transition proba
ties change, the solution of Eq.~6! reads as

P~1,t !5
a~ t !

a~ t !1b~ t !
, P~21,t !5

b~ t !

a~ t !1b~ t !
. ~7!

The probability of transition from statem at the moment
t2 to staten at the momentt1.t2 can be also easily calcu
lated:

P~n,t1um,t2!5P~n,t1!1
w~n,t1!w~m,t1!

P~m,t1!

3exp$2~ t12t2!l0~ t1!%,

l0~ t !5a~ t !1b~ t !, ~8!

w~1,t !52w~21,t !5
Aa~ t !b~ t !

a~ t !1b~ t !
.

In Eq. ~8! l0(t) and w(n,t) are the adiabatically slowly
varying nonzero eigenvalue and the corresponding eig
function of Eq. ~6!. Let us calculate now the two-particl
probability density function~PDF! P2(n,t1um,t2). According
to the common theory of Markov processes, this PDF is
7-2
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P2~n,t1um,t2!5P~n,t1um,t2!P~m,t2!5P~n,t1!P~m,t2!

1
w~n,t1!w~m,t1!

P~m,t1!
P~m,t2!

3exp$2~ t12t2!l0~ t1!%. ~9!

The time range of our interest is

ut12t2u;T, g21@ai
21 . ~10!

For these times we can replace the exponent in Eq.~9! by
a delta function and therefore obtain the following expr
sion:

P2~n,t1um,t2!5P~n,t1!P~m,t2!

1
2

l0~ t1!
w~n,t1!w~m,t1!d~ t12t2!.

~11!

Now, taking into account Eqs.~7! and ~8!, we get the
autocorrelation function

D~ t1 ,t2!5^d~ t1!d~ t2!&d5y0~ t1!y0~ t2!

1
8a~ t1!b~ t1!

@a~ t1!1b~ t1!#3
d~ t12t2!,

y0~ t !5^d~ t !&d5
a~ t1!2b~ t1!

a~ t1!1b~ t1!
[y0@x~ t !#, ~12!

y0~x!5
a0~x!2b0~x!

a0~x!1b0~x!
.

Let us now average Eq.~12! by stochastic processs(t)
and by phase of periodic processR(t). We calculate the fol-
lowing autocorrelator:

K~ t12t2!5^D~ t1 ,t2!&s,R2^y0~ t1!&s,R^y0~ t2!&s,R .
~13!

From Eqs.~12! and ~13! we obtain

K~ t12t2!5^d~ t1! d~ t2!&d,s,R2^d~ t1!&d,s,R^d~ t2!&d,s,R

5^y0~ t1!y0~ t2!&s,R2^y0~ t1!&s,R^y0~ t2!&s,R

18K a~ t1!b~ t1!

@a~ t1!1b~ t1!#3L
s,R

d~ t12t2!. ~14!

It is seen from Eqs.~1! and ~14! that

G~ t12t2!5^g~ t1! g~ t2!&d,s,R2^g~ t1!&d,s,R^g~ t2!&d,s,R

5
g0

2

4
K~ t12t2!5^y~ t1!y~ t2!&s,R

2^y~ t1!&s,R^y~ t2!&s,R
02110
-

12g0
2K a~ t1!b~ t1!

@a~ t1!1b~ t1!#3L
s,R

d~ t12t2!,

~15!

y~ t !5^g~ t !&d5
g0

2
@11y0~ t !#5g0

a~ t !

a~ t !1b~ t !
.

From Eq.~7! one can see that, first,y(t)/g0 is the prob-
ability that the channel is open, and, second, the autoco
lation function of conductivity is simply related to the one
dichotomous variable. We study the behavior of two char
teristics of the system. In the presence of a periodic signa
can use the signal-to-noise ratio. Otherwise, it is conven
to use the coherence function

G2~v!5
uS1~v!u2

S~v!S2~v!
,

S~v!5E eivtK~ t !dt, Sj~v!5E eivtK j~ t !dt,

j 51,2,
~16!

K1~ t12t2!5^d~ t1!S~ t2!&d,s,R5^y0~ t1!S~ t2!&s,R ,

K2~ t12t2!5^S~ t1!S~ t2!&S5exp@2gut12t2u#.

In the presence of both the dichotomous noise and r
angular signal it is possible to obtain expressions for
quantities of our interest. At first, we calculate the autoc
relation functionK(t). Since both signal and noise take on
two values61, we get, taking into account Eq.~3!, for ar-
bitrary function f $x(t)%:

f $x~ t !%5
11s~ t !

2

11R~ t !

2
f ~p1u1v !

1
12s~ t !

2

12R~ t !

2
f ~p2u2v !

1
11s~ t !

2

12R~ t !

2
f ~p1u2v !

1
12s~ t !

2

11R~ t !

2
f ~p2u1v !

5 f 0~p,u,v !1 f 1~p,u,v !s~ t !1 f 2~p,u,v !R~ t !

1 f 3~p,u,v !s~ t !R~ t !,

f 0~p,u,v !5 1
4 $ f ~p1u1v !1 f ~p2u2v !

1 f ~p1u2v !1 f ~p2u1v !%, ~17!

f 1~p,u,v !5 1
4 $ f ~p1u1v !2 f ~p2u2v !

1 f ~p1u2v !2 f ~p2u1v !%,

f 2~p,u,v !5 1
4 $ f ~p1u1v !2 f ~p2u2v !

2 f ~p1u2v !1 f ~p2u1v !%,
7-3
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f 3~p,u,v !5 1
4 $ f ~p1u1v !1 f ~p2u2v !

2 f ~p1u2v !2 f ~p2u1v !%.

The above coefficients have the following symme
properties:

f 1~p,0,v !50, f 2~p,u,0!50,

f 3~p,0,v !5 f 3~p,u,0!50. ~18!

We can now easily get the following expression for ar
trary functionsf (1), f (2) of the random processx(t):

^ f (1)$x~ t !% f (2)$x~0!%&s,R2^ f (1)$x~ t !%&s,R^ f (2)$x~0!%&s,R

5 f 1
(1)~p,u,v ! f 1

(2)~p,u,v !e2gutu

1 f 2
(1)~p,u,v ! f 2

(2)~p,u,v !w0~ t !

1 f 3
(1)~p,u,v ! f 3

(2)~p,u,v !e2gutuw0~ t !, ~19!

w0~ t !5^R~ t !R~0!&R5
4

p2 (
k50

`

~2k11!22

3exp@2 i ~2k11!Vt#, V5
2p

T
.

In our calculations of correlation functions we should o
viously takef (1)5 f (2)5y0(t) for K(t), and f (1)5y0(t), f (2)

5s(t) for K1(t). We also takev50 when calculatingK1(t).
Thus we obtain, after some calculations,

K~ t !5B1~p,u,v !e2gutu1B2~p,u,v !w0~ t !

1B3~p,u,v !e2gutuw0~ t !1C~p,u,v !d~ t !,

K1~ t !5AB1~p,u,0!e2gutu,

B1~p,u,v !5 1
16 $y0~p1u1v !2y0~p2u2v !

1y0~p1u2v !2y0~p2u1v !%2,

B2~p,u,v !5 1
16 $y0~p1u1v !2y0~p2u2v !

2y0~p1u2v !1y0~p2u1v !%2, ~20!

B3~p,u,v !5 1
16 $y0~p1u1v !1y0~p2u2v !

2y0~p1u2v !2y0~p2u1v !%2,

C~p,u,v !5^C0~x!&s,R5 1
4 $C0~p1u1v !1C0~p2u2v !

1C0~p1u2v !1C0~p2u1v !%,

C0~x!5
8a0~x!b0~x!

@a0~x!1b0~x!#3
.

Equation~20! gives the complete solution of the proble
in the range of parametersT,g21@ai

21 . However, we are
interested only with the adiabatic range Eq.~4!, where we
can assume
02110
-

-

w0~ t !e2gutu'w0~0!e2gutu5e2gutu. ~21!

Thus we get from Eq.~19!

K~ t !5$B1~p,u,v !1B3~p,u,v !%e2gutu

1B2~p,u,v !w0~ t !1C~p,u,v !d~ t !. ~22!

The noise background in the adiabatic case can be ca
lated simply atv50, sinceV!g. Therefore we obtain

S~v!5S~0!1B2~p,u,v !w0~v!,

S~0!5
2

g
$B1~p,u,v !1B3~p,u,v !%1C~p,u,v !, ~23!

w0~v!5
8

p (
k50

`

~2k11!22d@v2~2k11!V#.

We define the signal-to-noise ratio as the ratio of t
power of fundamental harmonics of the signal to the no
background:

RSN5
8

p

B2~p,u,v !

C~p,u,v !1
2

g
@B1~p,u,v !1B3~p,u,v !#

.

~24!

The maximum value of coherence function~at zero fre-
quency! is

G2~0!5
B1~p,u,0!

B1~p,u,0!1
g

2
C~p,u,0!

. ~25!

From Eqs.~24! and ~25! we see that the term withC is
small by the parameter of adiabaticitygai

21 . Nevertheless,
we take it into account, since one can see from Eq.~18! that
in the range of small noise amplitudes the coefficientsB1 ,B3
are small, and the contribution from the considered te
dominates. So, the formulas~20!, ~23!–~25! determine the
characteristics of the system in the adiabatic case.

IV. FAST NOISE CASE

When the external noise is fast@Eq. ~5!#,it is known @19#
that the time-dependent ratesa(t) andb(t) in Eq. ~6! can be
treated as nonrandom variables. This means that we can
stitute their instantaneous values in Eq.~6! with noise-
averaged ones. Therefore, we get the following master eq
tions:

dP~1,t !

dt
5a1~ t !P~21,t !2b1~ t !P~1,t !,

dP~21,t !

dt
5b1~ t !P~1,t !2a1~ t !P~21,t !,

a1~ t !5^a~ t !&S5a2@x1~ t !,u#,
7-4
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b1~ t !5^b~ t !&S5b2@x1~ t !,u#, ~26!

a2@x1 ,u#5 1
2 @a0~x11u!1a0~x12u!#,

b2@x1 ,u#5 1
2 @b0~x11u!1b0~x12u!#,

x1~ t !5p1vR~ t !.

The adiabatic condition for the external signalvR(t) is
still valid. Since Eqs.~26! do not contains(t), we should
repeat the calculations of the preceding section only forR(t).
The terms withB1 ,B3 now disappear, and we get

K1~ t !→0, G2~v!→0. ~27!

The expression for the autocorrelation function of the
chotomous variable becomes simpler:

K~ t !5B~p,u,v !w0~ t !1C1~p,u,v !d~ t !,

B~p,u,v !5 1
4 @y2~p1v,u!2y2~p2v,u!#2,

y2~x1 ,u!5
a2~x1 ,u!2b2~x1 ,u!

a2~x1 ,u!1b2~x1 ,u!
, ~28!

C1~p,u,v !5 1
2 @C2~p1v,u!1C2~p2v,u!#,

C2~x1 ,u!5
8a2~x1 ,u!b2~x1 ,u!

@a2~x1 ,u!1b2~x1 ,u!#3
.

The signal-to-noise ratio is

RSN5
8

p

B

C1
. ~29!

We note that Eq.~28! differs from Eq.~20! by the order of
averaging. In Eq.~28! the transition probabilities are ave
aged by fast noise first, and subsequently the final exp
sions are averaged by the phase of the periodic signal. In
~20!, however, only the final expressions are averaged sim
taneously by the noise and the phase of signal.

V. ANALYSIS OF THE RESULTS

First of all, we show that the behavior of the noise bac
groundS(0) and the output signal powerB2 in the adiabatic
case is rather universal and almost independent of the
ticular form of transition probabilities dependence on ext
nal stimulus. Let us consider the case of a small signal:

v!1, p,u@1. ~30!

Now we see from Eq.~23! that, sinceB3!B1 and B1
@gC at g!ai ,

S~0!5
2

g
B1~p,u,0!,

B1~p,u,0!5 1
4 @y0~p1u!2y0~p2u!#2, ~31!
02110
-
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B2~p,u,v!1!5
v2

4
@y08~p1u!1y08~p2u!#2,

RSN5
4g

p

B2

B1
.

It can be seen from the definition ofy0(x) in Eq. ~12! that

y0~x!5H 12
2b0~x!

a0~x!
, b0~x!!a0~x!,

211
2a0~x!

b0~x!
, b0~x!@a0~x!,

~32!

that is, this function changes from21 to 1 in the region
where the curvesa0(x) and b0(x) intersect. One can se
from Fig. 1 that the intersection point locates nearx'2p2 .
Thus the rapid change ofy0(x) and the peak ofy08(x) occur
for this value ofx. The sketch in Fig. 2 shows that the b
havior of B1 ,B2 in Eq. ~31! in the vicinity of the pointsp
1p26u50 is strongly nonmonotonous. This behavior
also rather universal, since the locations of the mentio
points are determined by intersection ofa0(x) and b0(x)
and depend only weakly on the particular form of the lat
curves. Remember that the described universality is obse
for small and adiabatically slow signals. Figure 3 demo
strates the dependences of the output signal power, the n
background, and the signal-to-noise ratio on the biasp and
the external noise amplitudeu. For largep andu the two first
characteristics show the same behavior as in Fig. 2. Figu
displays the sections of the SNR surface for various b
values. It is clearly seen that the maximum of the SNR
observed atp1p26u50. We see also from Figs. 3 and
that for small noise amplitude the best conditions for sig
transmission are achieved atp1p2'0. To emphasize the

FIG. 2. The sketch ofB1 , B2 vs the biasp.
7-5



pl
del

S. L. GINZBURG AND M. A. PUSTOVOIT PHYSICAL REVIEW E66, 021107 ~2002!
FIG. 3. The dependence of output signal~a!, the noise back-
ground~b!, and SNR~c! on the biasp and the noise amplitudeu in
the adiabatic case@Eqs. ~20!, ~23!, ~24!# for the model~2! at g
50.001,p2546,a250.03,b251,a150.015,b150.038, andv51.
In accordance with@16#, the values of voltagesp,u, and v are
scaled to 1 mV, and those of times to 1 ms.~b! is turned in the plane
(p,u) with respect to the other two; the noise-induced noise am
fication is evident.
02110
i-

FIG. 4. The signal-to-noise ratio vs the noise amplitudeu for the
model~2! in the adiabatic case for several values of the biasp. The
values of parameters are the same as in Fig. 3.

FIG. 5. The same dependences as in Fig. 3 but for the mo
~33!. The values of parametersa2 , p2 , a1 , b2, andg are the same
as above.
7-6
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universality of the described phenomenon, we use the s
plified model of Hodgkin-Huxley type for transition prob
abilities, which is used widely in ion channel biophysi
@15#:

a0~x!5a2exp@b2~x1p2!#,

b0~x!5a1 . ~33!

These curves intersect like the ones in Eq.~2! ~Fig. 1!,
and one can expect that both systems behave similarly in
adiabatic range. Indeed, it is seen from Fig. 5 that forupu,u
@1 all the quantities demonstrate the same behavior. In
estingly, stochastic resonance is observed for the model~33!
only at p,2p2. Such a universality disappears when t
noise is fast, as it is demonstrated in Fig. 6@the model~2!#

FIG. 6. The dependences of the output signal, the noise b
ground, and the signal-to-noise ratio on the biasp and the noise
amplitudeu for the model~2! in the fast noise case@Eqs.~28! and
~29!#. The parameter values are the same as in Fig. 3.
02110
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he
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and Fig. 7@the model~33!#. In Fig. 6~b! we see that for the
model~2! the noise background decreases with increase ou,
demonstrating noise-induced reduction of noise. This in
esting phenomenon was recently found in other sim
model systems~ @17,18#!. The sections of the SNR surfac
are shown in Fig. 8 for the model~2!. They look very similar
to the curves of information gain for various biases presen
in the paper of Goychuk and Ha¨nggi @16#. Figure 7 demon-
strates also that only one branch of resonance exists for
model ~33!.

Let us consider now the coherence function in the ad
batic case. We see from Eq.~25! that, since B1
@g/2C, B350 for u@1, andv50,

G2~0!'1, u@1. ~34!

k-

FIG. 7. The same graphs as in Fig. 6, but for the model~33!.
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This means that the output signal is completely synch
nized with the external dichotomous noise. Figure 9 displ
the graphs of coherence function for both studied mod
When comparing these graphs with Figs. 3~b! and 5~b!, we
see that the synchronization takes place in the region w
the noise background is large. Remember that for fast n
the signal and noise are desynchronized@Eq. ~27!#.

VI. FINAL REMARKS

In the present work we focus on the stochastic resona
arising in the range of parameters where the probabilitie
transitions between two states of the channel are clos
each other. When noise is strong enough, there are
branches of resonance, at the bias values above and b
the threshold potential. In the adiabatic case, at value
parameters used by Goychuk and Ha¨nggi in the model of the
potassium channel@16#, the values of SNR maximum in
these branches are rather close; at the other relation o
rameters they can strongly differ. Nevertheless, the very
currence of such resonance is universal and requires only
presence of a point where the curves of dependences of
sition probabilities on external potential intersect. On
again, we note that the kind of SR described here diff
from that was found by Bezrukov and Vodyanoy~@11–14#!,
since the last is observed in the rangea0!g!b0 ~Fig. 1!.
The theory developed by us is rather general, and one
investigate with it the other interesting and physically mo

FIG. 8. The signal-to-noise ratio vs the noise amplitudeu for the
model~2! in the fast noise case for several values of the biasp. The
curves are the sections of the surface depicted in Fig. 6.
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vated ranges of parameters that remain beyond the scop
our paper.
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FIG. 9. The dependence of the coherence function maxim
G2(0) in the adiabatic case@Eq. ~25!# on the parametersp, u for the
models~2! ~a! and~33! ~b! for the same parameter values as in Fig
3 and 5.
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