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Stochastic resonance in two-state model of membrane channel with comparable opening
and closing rates
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\oltage-gated ion channels in biological membranes can be modeled as two-state stochastic systems with
inter-state transition probabilities that depend on external stimulus. We study analytically the passage of a
signal through such a system in the presence of external noise in the case when the above dependence is
arbitrary, and illustrate our approach using the two models of ion channels known in the literature. The explicit
expressions for the spectral density of the output signal and noise, the signal-to-noise ratio, and the coherence
function are obtained for rectangular periodic signal and dichotomous noise in a wide range of parameters. The
dependence of the above quantities on the bias and on the noise amplitude demonstrates strong resonant
behavior in the regions where the probabilities of channel closing and opening become equal. This resonance
results from additional symmetry between channel states and differs from conventional stochastic resonance
studied earlier.
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[. INTRODUCTION theory is realized here when the probability of transition

from one channel state to anothére., closing is much

Stochastic resonandSR) is one of the most interesting higher than the probability of backwards transititpen-
and bright examples of the constructive role of noise in nain@- In this case the channel is closed most of the time,
ture. This phenomenon has been extensively studied in tH&P€niNg only occasionally and briefly. Such a set of proper-

last decaddsee reviewg1,2] and the older revieya]) and ties is not typical for channels in membranes of living cells.
. . ’ L In many cases, the opening and closing rates and correspond-
can be briefly described as the optimization of passage of 919 dwell times are comparabfé5]. The last circumstance is

_signal_through a nonlinez_ir system yvith the nois_e of nonzerQ jiaq by Goychuk and Hiagi in[16] where they studied SR
intensity, added to the signal. SR is found out in numeroug,y information theory methods in the model of ion channel,
systems of various kinds; a significant fraction of publica-considering it as a two-state system with an arbitrary ratio of
tions was devoted to the study of its possible role in infor-transition rates. The theory is restricted by the case of an
mation transfer in living organisms, where the useful signalsadiabatically slow signal and white noise. Our work is de-
are always accompanied by strong ineradicable ngmsethe voted to the analytical study of passage of a signal through
recent minireview{4]). In particular, it was found out that an ion channel as the two-state system where the transition
living beings can use SR at several levels: the system ongrobabilities between states depend on external stimulus. The
(the recognition of visual5] and tactile[6] stimuli by hu-  theory is constructed for arbitrary form of such dependence;
mang and the cellular onémechanoreceptors of crayfigH, for illustrative purposes we choose the model of potassium
neurons of brain corte}g], ear hair celld9,10)). Bezrukov ~ channel used if16] [see Eq.(2) below], as well as the
and Vodyanoy in their experimefit1] studied the ensemble Widely used model of Hodgkin-Huxley typgl5] [our Eqg.

of ion channels, each of them being a small aggregate d83]-We study the system with dichotomous noise and rect-
alamethicin molecules, in a bilayer lipid membrane. They2ngular periodic signal. Such a choice of noise and signal
discovered that the system amplifies a small low-frequencg}OWs US t0 solve the problem exactly for any, not necessar-
periodic electric signal by several orders of magnitude afteluy s.m.all, values of noise and_ signal amphtudes. We obtain
addition of high-frequency colored noise to the signal. TheyeprICIt expressions for the signal-to-noise ratiNR), the

. 2 .
also observed a weak maximum of the signal-to-noise ratigohergnce fL_‘g'Ct'O'r ’ ar;d the potwer (;_fhoutpqt S|gnallt a?(tjh
at an optimum noise intensity. Thus the possibility of usingno"'se In & wide range or parameters. The main resuit ot the

SR at a molecular level in biological systems was demonPaper is the detection of resonant behavior of investigated

strated(the first, unsuccessful attempt to find SR in a singlequamItles in the case when the probabilities of opening and

ion channel was performed i{i12]). In further publications closing of the_channel beco_me equal. Th.is_ resonance differs
the authors showed analytically that SR could be observed i orr_]_convennonal stochastic resonance; it is related to an
practically any system that generates stochastic pulses wi fditianal symmeiry beitween open anq.closed states of the
nonlinear(exponential, in particulardependence of the rate ¢ a”!"e' that appears Whe'." the transition probabilities are
of pulse appearance on external stimyli3,14]. The theory identical. .In'the range c.)f emstgnce of such symmetry all 'ghe
is constructed for a case of rather rare pulses of r1eg"gibb;haracterlstlcs display interesting nonmonotonous behavior.
small duration. In case of a single ion channel, the time
course of its conductivity can be roughly represented as the
sequence of random switchings between two states, the open The ion channel can be described by a simple dichoto-
one and the closed one. The situation described by the aboveous mode[15]. Let g(t) be the time-dependent conductiv-

Il. THE MODEL
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1.0 Now let us note that there are two kinds of stochasticity in
our problem. The internal one is related to transitions be-
0.8 tween two statesi(t), and the external one is caused by
external noises(t). As a result, two types of averaging ap-
= 06 pear in the theory, which we further designate, accordingly,
% (a and()s.
= 04 Besides, there are three characteristic times in the prob-
‘2’0 lem: the switching time ofi(t), equal toai’l, the time of

correlation of dichotomous noisg %, and the period of sig-
nal T. We take T> yfl,ai‘l, however, allowing the ratio

betweeny anda; to vary. We shall consider two cases, the
adiabatic one:

0.2

0.0

-80 70 -0 -50 40 -30 -20 -10 O i a1
X T>y *>a 7, (4)
FIG. 1. The transition probabilitieso(x), Bo(x) for the model ~and the fast noise one:
of potassium channe{2) (solid curve$ and for the model of 1 4
Hodgkin-Huxley type(33) (dashed curvedor the values of param- T>a ">y " %)
eters:p,=46,a,=0.15,a,=0.03,b;=0.038, andb,=1. o ) o
In both these limits it is possible to explicitly calculate all
ity of the channel. In the standard theory it can accept twdluantities that we are interested in as functions of parameters
values, 0 andy,. For our purposes it is convenient to intro- Of the stimulusp,u,v.
duce the dichotomous variabtgt):
I1l. ADIABATIC CASE

dit)y==1, g(t)= %{1+d(t)}. 1 The master equation for nonstationary probability density
P(d,t) for our problem is

Obviously,d(t)=—1 corresponds to the closed state of dP(1})

the channel, andi(t)=1 to the open one. The transitions =a(t)P(=14)—B(HP(LY),

between these states are determined by transition probabili- dt

ties, which, in turn, adiabatically follow the external stimulus

(the transmembrane voltage djogft). Let us definex(t) as dP(-11) =B(OP(L)— a(t)P(—11). (6)
the probability of transition of the channel from the closed dt ’ ’

state to the open one, amglt) as the probability of back- i ) . ) ) .
wards transition. The dependence of these quantities on vol- ©iNc€ the local balance in the system in adiabatic condi-
age has the form similar to that used by Goychuk afiddga tions is established much faster than the transition probabili-

[16]: ties change, the solution of E¢6) reads as
a(t)=ao{x()},  B()=Bo{X(D)}, A o PO
@ PAY= e UM amesn @
az(X+p2) o .
ap(X)= 1= exp —b,(x+ Py}’ Bo(X)=aexp(—bx). The probability of transition from state at the moment
2 2 t, to staten at the moment;>t, can be also easily calcu-
The dependence®) are represented in Fig. 1. lated:
The external stimulug(t) consists of the biap, the di- (Nt o(m,ty)
chotomous noise(t), and the square-wave periodic signal P(n,tym,t,) = P(n,ty) + e P
R(t): P(m,t,)
x(t)=p+us(t) +vR(t), xexp — (ti=t2)ho(ty)},
s(h==1, (s(t))=0, No(t)=a(t)+B(1), ®
(s(t) s(t"))=exp[— ylt—t'[}, ) Ve A

e(I)=—@(—1t)= FPOETIOR
1, 0<t<T/2,

RE+T)=R()={ _1 T/o<t<T In EqQ. (8) \o(t) and ¢(n,t) are the adiabatically slowly
' ' varying nonzero eigenvalue and the corresponding eigen-
function of Eq.(6). Let us calculate now the two-particle
In the present work we scale voltages and times to theiprobability density functiodPDF) P,(n,t;|m,t,). According
characteristic values 1 mV and 1 ms, like the authorfsl6f.  to the common theory of Markov processes, this PDF is
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P,(n,t|m,t)=P(n,t;|m,ty) P(m,t)=P(n,t;) P(m,ty,)

e(nt)e(m,ty)
P(m,ty)

X exp{— (t;—t)No(ty)}. 9

The time range of our interest is

P(m,t5)

[ti—ty|~T, y '>a t. (10)

For these times we can replace the exponent in@®doy

a delta function and therefore obtain the following expres

sion:

PZ(n!t1| m!tZ) = P(n!tl)P(m!tZ)

2
+ m@(n,tl)so(m,tl) S(ty—ty).

(11)

Now, taking into account Eqg7) and (8), we get the
autocorrelation function

D(ty,tp)=(d(t1)d(t2))a=Yo(t1)Yo(t2)

8a(ty)B(ty)

—5 _
[ty + B o

a(ty) —pB(t)

Yo =(d(D)a= 3T a1, =

Yolx()], (12

(X~ Bo(X)

YolX)= 4 0+ Bo(x)

Let us now average Ed12) by stochastic process(t)
and by phase of periodic proceRét). We calculate the fol-
lowing autocorrelator:

K(t;—t) =(D(t1,t2))sr=(Yo(t1))s rR{Yo(t2))sr-
(13

From Egs.(12) and(13) we obtain
K(ty—ty)=(d(ty) d(t2))q,s r—(d(t1))asr(A(t2))a s r
=(Yo(t1)Yo(t2))sr—(Yo(t1))sr{Yo(t2))sr

a(ty)B(ty)
gl MY st-t,). (14)
<[a<t1>+ﬂ<t1>]3>S,R (Lt
It is seen from Eqs(l) and(14) that
G(t;—t2)=(g(t1) 9(t2))a,sr—(9(t1))as R(A(t2) ) a5 R
95

=7 Klti=t2) =(¥(t)y(t2))sr

—(y(t))sr(Y(t2))sr
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o] alt)Bty) >
_— o(ti—t,),
g°<[a<tl>+ﬂ<tl>13 e

a(t)
a(t)+pB(t)

From Eq.(7) one can see that, firsg(t)/g, is the prob-
ability that the channel is open, and, second, the autocorre-
lation function of conductivity is simply related to the one of
dichotomous variable. We study the behavior of two charac-
teristics of the system. In the presence of a periodic signal we

V(D =(a(0)a= 211+ yo(1)]= G

“can use the signal-to-noise ratio. Otherwise, it is convenient

to use the coherence function

|Sl(w)|2

2 _
@)= 505w

S(w)=f eiwtK(t)dt, Si(w):f eiwtKj(t)dt,

=12,
(16)
Kq(ty—tp) =(d(t1)S(t2)) 4,5 r=(Yo(t1) S(t2))s R

Koty —tp) =(S(t1)S(t2))s=exd — y|t;—t5]].

In the presence of both the dichotomous noise and rect-
angular signal it is possible to obtain expressions for all
quantities of our interest. At first, we calculate the autocor-
relation functionkK (t). Since both signal and noise take only
two values*1, we get, taking into account E¢J), for ar-
bitrary functionf{x(t)}:

1+s(t) 1+R(t
o= X

u+vov)

1-s(t) 1-R(1)
3 2

f(p—u—-v)

1+s(t) 1—R(t)
+

5 5 f(p+u—v)

1—s(t) 1+R(t)
2 2
:fo(p,U,U)+fl(p,U,U)S(t)+ f2(pvu!v)R(t)
+13(p,u,v)s(R(L),

+

f(p—u+v)

fo(p,u,v)=3{f(p+u+v)+f(p—u—v)
+f(ptu—v)+f(p—u+v)}, 17

fi(p,u,v)=3{f(p+u+v)—f(p—u-v)
+f(p+u—v)—f(p—u+v)},

fo(p,u,v)=3{f(p+u+v)—f(p—u-v)
—f(p+u—v)+f(p—u+v)},
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fa(p,u,0)=Hf(p+u+v)+f(p—u-v) eo(t)e M= py(0)e =7, (21)
—f(p+tu—v)—f(p—u+v)}. Thus we get from Eq(19)
The above coefficients have the following symmetry K(t)={By(p,u,v)+Bs(p,u,v)}e "
properties:
+Bz(p,u,v)qoo(t)+C(p,u,v)5(t). (22)

fl(p,O,v)=0, fz(p,U,O):o,
The noise background in the adiabatic case can be calcu-
f3(p,0p)="3(p,u,00=0. (18  lated simply atw=0, since()<y. Therefore we obtain

We can now easily get the following expression for arbi- S(w)=S(0)+Ba(p,u,v)@o(w),
trary functionsf®,£(2) of the random process(t):

2
(OO0} s r (FPXO})s r(F P05 S(0)= 7 {Bulp.uv)+Bo(p.uv)j+Clp.uv). (23

=1{(p,u,0)fP(p,u,v)e M g -
180,00 12(p,U,0) oD golw) = 2 (2k+1) 7?0 (2k+1)0].
(1) (2) =
TP u) T (P, uw)e (D), (19 We define the signal-to-noise ratio as the ratio of the
4" power of fundamental harmonics of the signal to the noise
eo(t) =(RIR(0))g=—; 3 (2k+1)"? background:
2 e
8 Ba(p,u,v)
) 27 RSN=; 2 .
xexd —i2k+ D)ot 0= C(p.u.v)+[By(P,U0) + By(p,u.0)]

In our calculations of correlation functions we should ob- (24
viously takef®)=f{(@=y(t) for K(t), andfM=y,(t),{* The maximum value of coherence functi¢at zero fre-
=g(t) for K(t). We also takey =0 when calculatind<,(t). quency is
Thus we obtain, after some calculations,

Bl(p,U,O)
K(t)=By(p,u,v)e”"+Bay(p,u,0) eo(t) r?(0)= » (25
+Ba(p.u,v)e M pg(t) +C(p,uv)alt), Ba(p.u0)+5C(p.u.0)
K,(t)=vBy(p,u,00e ", From Egs.(24) and (25) we see that the term witl is
small by the parameter of adiabaticipya; 1 Nevertheless,
B1(p,u,v)=3{yo(p+u+v)—Yyo(p—u—v) we take it into account, since one can see from &8) that
5 in the range of small noise amplitudes the coefficidtsB3
+Yo(P+u—v)=Yo(p—utv)}, are small, and the contribution from the considered term
1 dominates. So, the formula®0), (23)—(25) determine the
Ba(p,u,v)=15{Yo(P+U+v)=yo(P—U—v) characteristics of the system in the adiabatic case.

—Yo(p+u—v)+yo(p—u+v)}?, (20
IV. FAST NOISE CASE

1 — -
Ba(p.uv)=16{Yo(pFutv)+ye(p—u=v) When the external noise is fadEq. (5)],it is known[19]

—Yo(ptu—v)—yo(p—u+v)}? that the time-dependent rgta$t) andﬁ(t) in Eq. (6) can be
treated as nonrandom variables. This means that we can sub-

C(p,u,v)=(Co(X))sg=3{Co(p+u+v)+Co(p—u—0n) stitute their instantaneous values in E®) with noise-
' averaged ones. Therefore, we get the following master equa-
+Co(ptu—v)+Co(p—u+uv)}, tions:
8ap(X) Bo(X dP(1t)
Cofx) = — 200 = a(DP(— 10~ B(DP(L),
[ao(X)+Bo(X)]
Equation(20) gives the complete solution of the problem dP(—=1}) _ B B
in the range of parametef®,y '>a; . However, we are dt A OP(LY = ay(HP(=11),
interested only with the adiabatic range HEd), where we
can assume aq(t)=(a(t))s= as[x(1),u],
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Bi(t)=(B(1))s= B2l x1(1),ul, (26)

ag[X1,Uul= [ ag(Xy+U) + ag(x;—u)],

BalX1,ul=3[ Bo(X1+U) + Bo(x,—u)],
X1(H)=p+uvR(1).

The adiabatic condition for the external signdR(t) is
still valid. Since Eqs(26) do not contains(t), we should
repeat the calculations of the preceding section onlyRi@j.
The terms withB,,B3; now disappear, and we get

Ky(t)—0, I'*(w)—0. (27)

The expression for the autocorrelation function of the di-
chotomous variable becomes simpler:

K(t)=B(p,u,v)@o(t)+Cy(p,u,v)s(t),
B(p,u,v)=z[y2(p+v,u)—yo(p—v,u)]%

a2(xl ,U) - BZ(leu)
ay(Xq,U)+ Bo(Xqg,u)’

Ya(Xq1,Uu)= (29

Cl(p,u,v)=%[Cz(p+v,u)+C2(p—v,u)],

8ay(Xq1,U)Ba(Xg,U)
[aa(Xq,U)+ Ba(Xg,u) 1%

C2(X1,U) =

The signal-to-noise ratio is

8 B

SNT c (29

We note that Eq(28) differs from Eq.(20) by the order of
averaging. In Eq(28) the transition probabilities are aver-

PHYSICAL REVIEW E 66, 021107 (2002

-p,+U o

FIG. 2. The sketch oB,, B, vs the biag.

2
U
Ba(p.u,v<1)=-[yo(p+ u)+yg(p—u)l?,

4y B>
SN a Bl.

It can be seen from the definition g§(x) in Eq. (12) that

L 2Bo0)

, Bo(X)<ap(X),
ag(X)
Yo(X)= 2aro(X) (32
-1+ EO(EX) , Bo(X)>an(X),

aged by fast noise first, and subsequently the final expres- ) _ ) _
sions are averaged by the phase of the periodic signal. In E{at is, this function changes from1 to 1 in the region
(20), however, only the final expressions are averaged simufVhere the curvesyy(x) and Bo(x) intersect. One can see

taneously by the noise and the phase of signal.

V. ANALYSIS OF THE RESULTS

First of all, we show that the behavior of the noise back-

groundS(0) and the output signal pow&; in the adiabatic

from Fig. 1 that the intersection point locates nrar—p, .
Thus the rapid change 9f(x) and the peak of((x) occur

for this value ofx. The sketch in Fig. 2 shows that the be-
havior of B;,B, in Eq. (31) in the vicinity of the pointsp
+p,=u=0 is strongly nonmonotonous. This behavior is
also rather universal, since the locations of the mentioned

case is rather universal and almost independent of the papoints are determined by intersection @§(x) and Bq(X)
ticular form of transition probabilities dependence on exter-and depend only weakly on the particular form of the latter

nal stimulus. Let us consider the case of a small signal:

v<l, p,u>1. (30

Now we see from Eq(23) that, sinceB;<B; and B;
>+yC at y<gq;,

S(O): %Bl(plulo)l

B1(p,u,0)=2[yo(P+u)—Yo(p—w)1% (31

curves. Remember that the described universality is observed
for small and adiabatically slow signals. Figure 3 demon-
strates the dependences of the output signal power, the noise
background, and the signal-to-noise ratio on the Ipiasd

the external noise amplitude For largep andu the two first
characteristics show the same behavior as in Fig. 2. Figure 4
displays the sections of the SNR surface for various bias
values. It is clearly seen that the maximum of the SNR is
observed ap+p,*u=0. We see also from Figs. 3 and 4
that for small noise amplitude the best conditions for signal
transmission are achieved pt-p,~0. To emphasize the
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10" kb

FIG. 4. The signal-to-noise ratio vs the noise amplituder the
model(2) in the adiabatic case for several values of the piakhe
values of parameters are the same as in Fig. 3.

i “\
u M\\\ i
E mt\\\
MM

N

FIG. 3. The dependence of output sigral, the noise back-
ground(b), and SNR(c) on the biagp and the noise amplitudein
the adiabatic casgEgs. (20), (23), (24)] for the model(2) at y -
=0.001,p,=46,a,=0.03,b,=1,a;,=0.015,=0.038, anch =1. ©

In accordance wit{16], the values of voltagep,u, andv are

scaled to 1 mV, and those of times to 1 rt9.is turned in the plane FIG. 5. The same dependences as in Fig. 3 but for the model
(p,u) with respect to the other two; the noise-induced noise ampli{33). The values of parametess, p,, a;, b,, andy are the same
fication is evident. as above.
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FIG. 6. The dependences of the output signal, the noise back- )
ground, and the signal-to-noise ratio on the hiaand the noise
amplitudeu for the model(2) in the fast noise cadeeqgs.(28) and FIG. 7. The same graphs as in Fig. 6, but for the m¢aa).

(29)]. The parameter values are the same as in Fig. 3.

universality of the described phenomenon, we use the sin"d Fig. 7[the model(33)]. In Fig. 6b) we see that for the
plified model of Hodgkin-Huxley type for transition prob- model(2) the noise background decreases with increasg of
abilities, which is used widely in ion channel biophysics demonstrating noise-induced reduction of noise. This inter-

[15]: esting phenomenon was recently found in other simple
model systems [17,18)). The sections of the SNR surface
ao(X) =asexpg bo(x+p,)], are shown in Fig. 8 for the modé&2). They look very similar
to the curves of information gain for various biases presented
Bo(X)=a;. (33  in the paper of Goychuk and iHggi [16]. Figure 7 demon-

strates also that only one branch of resonance exists for the
These curves intersect like the ones in E2). (Fig. 1), model (33).
and one can expect that both systems behave similarly in the Let us consider now the coherence function in the adia-
adiabatic range. Indeed, it is seen from Fig. 5 that]| firu batic case. We see from Eq(25 that, since B,
>1 all the quantities demonstrate the same behavior. Intes>y/2C, B3;=0 for u>1, andv=0,
estingly, stochastic resonance is observed for the m@®z!
only at p<-—p,. Such a universality disappears when the
noise is fast, as it is demonstrated in Fig[tbe mode(2)] r?(0)~1, u>1. (39
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0006 --- 36
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0.004F L R 72
P I ; *
.4 \\ .' \
\! \ " ‘~\
0.002} L ~, T -
_d°. N
-~ . g e e e —-—
I N b
_|2; 1 - ! — 1 1
0 10 20 30 40 50
u

FIG. 8. The signal-to-noise ratio vs the noise amplituder the
model(2) in the fast noise case for several values of the pidhe
curves are the sections of the surface depicted in Fig. 6.

This means that the output signal is completely synchro-
nized with the external dichotomous noise. Figure 9 displays
the graphs of coherence function for both studied models.
When comparing these graphs with Figgb)3and 5b), we
see that the synchronization takes place in the region where
the noise background is large. Remember that for fast noise
the signal and noise are desynchroniEd. (27)].

VI. FINAL REMARKS

In the present work we focus on the stochastic resonance
arising in the range of parameters where the probabilities of
transitions between two states of the channel are close to FIG. 9. The dependence of the coherence function maximum
each other. When noise is strong enough, there are twb?(0) in the adiabatic cad&q. (25)] on the parameters, u for the
branches of resonance, at the bias values above and beldd@dels(2) (a) and(33) (b) for the same parameter values as in Figs.
the threshold potential. In the adiabatic case, at values ot and 5.
parameters used by Goychuk andniggi in the model of the
potassium channgl16], the values of SNR maximum in Vvated ranges of parameters that remain beyond the scope of
these branches are rather close; at the other relation of pQur paper.
rameters they can strongly differ. Nevertheless, the very oc-
currence of such resonance is universal and requires only the ACKNOWLEDGMENTS

presence of a point where the curves of dependences of tran-
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